exclusive$26488$ - definizione. Che cos'è exclusive$26488$
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è exclusive$26488$ - definizione

TWO PROPOSITIONS OR EVENT THAT CANNOT BOTH BE TRUE
Mutually exclusive; Mutually exclusivity; Mutually Exclusive Events; Mutually Exclusive; Mutual Exclusivity; Mutually exclusive events

Mutual exclusivity         
In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both.
exclusive or         
  • Arguments on the left combined by XOR. This is a binary [[Walsh matrix]] (cf. [[Hadamard code]]).
  • 36px
  • 50px
  • 36px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • right
  • 50px
  • 50px
  • 24px
  • Traditional symbolic representation of an XOR [[logic gate]]
  • binary]] representation. This is also the vector addition in <math>(\Z/2\Z)^4</math>.
TRUE WHEN EITHER BUT NOT BOTH INPUTS ARE TRUE
Xor; XOR function; Exclusive-or; Exclusive OR; XORed; Exclusive nand; XOR; BitXor; Bit xor; Logical inequality; Logical XOR; XOR (logic); Exclusive disjunction; ↮; Ex or; Exclusive Or; Exclusive-Or; EXOR (logic); ⊻; Exclusive-OR; EX-OR; Zhegalkin addition; Zegalkin addition; Žegalkin addition; Gegalkine addition; Gégalkine addition; Shegalkin addition; Schegalkin addition; Жега́лкин addition; ⩒
<logic> (XOR, EOR) /X or, E or/ A two-input Boolean logic function whose result is true if one input is true and the other is false. The truth table is A | B | A xor B --+---+-------- F | F | F F | T | T T | F | T T | T | F The output is thus true if the inputs are not equal. If one input is false, the other is passed unchanged whereas if one input is true, the other is inverted. In Boolean algebra, exclusive or is often written as a plus in a circle: "⊕". The circle may be omitted suggesting addition modulo two. In digital logic, an exclusive or logic gate is drawn like a normal inclusive or gate but with a curved line across both inputs: exclusive or gate (img:http://upload.wikimedia.org/wikipedia/commons/e/e0/XOR.jpg). (2006-12-13)
xor         
  • Arguments on the left combined by XOR. This is a binary [[Walsh matrix]] (cf. [[Hadamard code]]).
  • 36px
  • 50px
  • 36px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • 50px
  • right
  • 50px
  • 50px
  • 24px
  • Traditional symbolic representation of an XOR [[logic gate]]
  • binary]] representation. This is also the vector addition in <math>(\Z/2\Z)^4</math>.
TRUE WHEN EITHER BUT NOT BOTH INPUTS ARE TRUE
Xor; XOR function; Exclusive-or; Exclusive OR; XORed; Exclusive nand; XOR; BitXor; Bit xor; Logical inequality; Logical XOR; XOR (logic); Exclusive disjunction; ↮; Ex or; Exclusive Or; Exclusive-Or; EXOR (logic); ⊻; Exclusive-OR; EX-OR; Zhegalkin addition; Zegalkin addition; Žegalkin addition; Gegalkine addition; Gégalkine addition; Shegalkin addition; Schegalkin addition; Жега́лкин addition; ⩒

Wikipedia

Mutual exclusivity

In logic and probability theory, two events (or propositions) are mutually exclusive or disjoint if they cannot both occur at the same time. A clear example is the set of outcomes of a single coin toss, which can result in either heads or tails, but not both.

In the coin-tossing example, both outcomes are, in theory, collectively exhaustive, which means that at least one of the outcomes must happen, so these two possibilities together exhaust all the possibilities. However, not all mutually exclusive events are collectively exhaustive. For example, the outcomes 1 and 4 of a single roll of a six-sided die are mutually exclusive (both cannot happen at the same time) but not collectively exhaustive (there are other possible outcomes; 2,3,5,6).